A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers.

نویسندگان

  • Mary L Preuss
  • David R Kovar
  • Y-R Julie Lee
  • Christopher J Staiger
  • Deborah P Delmer
  • Bo Liu
چکیده

A novel kinesin, GhKCH1, has been identified from cotton (Gossypium hirsutum) fibers. GhKCH1 has a centrally located kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and other CH domain-containing kinesins (KCHs) belong to a distinct branch of the minus end-directed kinesin subfamily. To date the KCH kinesins have been found only in higher plants. Because the CH domain is often found in actin-binding proteins, we proposed that GhKCH1 might play a role in mediating dynamic interaction between microtubules and actin microfilaments in cotton fibers. In an in vitro actin-binding assay, GhKCH1's N-terminal region including the CH domain interacted directly with actin microfilaments. In cotton fibers, GhKCH1 decorated cortical microtubules in a punctate manner. Occasionally GhKCH1 was found to be associated with transverse-cortical actin microfilaments, but never with axial actin cables in cotton fibers. Localization of GhKCH1 on cortical microtubules was independent of the integrity of actin microfilaments. Thus, GhKCH1 may play a role in organizing the actin network in coordination with the cortical microtubule array. These data also suggest that flowering plants may employ unique KCHs to coordinate actin microfilaments and microtubules during cell growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments.

Many biological processes require the co-operative involvement of both microtubules and microfilaments; however, only a few proteins mediating the interaction between microtubules and microfilaments have been identified from plants. In the present study, a cotton kinesin GhKCH2, which contains a CH (calponin homology) domain at the N-terminus, was analysed in vitro and in vivo in order to under...

متن کامل

Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin

Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution con...

متن کامل

An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis.

Members of the kinesin superfamily are microtubule-based motor proteins that transport molecules/organelles along microtubules. We have identified similar internal motor kinesins, Kinesin-13A, from the cotton Gossypium hirsutum and Arabidopsis thaliana. Their motor domains share high degree of similarity with those of internal motor kinesins of animals and protists in the MCAK/Kinesin13 subfami...

متن کامل

A Nonprocessive Class V Myosin Drives Cargo Processively When a Kinesin- Related Protein Is a Passenger

During secretory events, kinesin transports cargo along microtubules and then shifts control to myosin V for delivery on actin filaments to the cell membrane [1]. When kinesin and myosin V are present on the same cargo, kinesin interacts electrostatically with actin to enhance myosin V-based transport in vitro [2]. The relevance of this observation within the cell was questioned. In budding yea...

متن کامل

The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis

Nuclei of Xenopus laevis oocytes grow 100 000-fold larger in volume than a typical somatic nucleus and require an unusual intranuclear F-actin scaffold for mechanical stability. We now developed a method for mapping F-actin interactomes and identified a comprehensive set of F-actin binders from the oocyte nuclei. Unexpectedly, the most prominent interactor was a novel kinesin termed NabKin (Nuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 136 4  شماره 

صفحات  -

تاریخ انتشار 2004